Daniel Christopher Arp

Assistant Prof. Dr.-Ing.

Daniel Christopher Arp
Roles
  • Assistant Professor
Courses
Projects (at TU Wien)
Publications (created while at TU Wien)
    2025
    • Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version]
      Cortellazzi, J., Quiring, E., Arp, D., Pendlebury, F., Pierazzi, F., & Cavallaro, L. (2025). Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version]. ACM Transactions on Privacy and Security, 28(4), 1–37.
      DOI: 10.1145/3742895 Metadata
      Abstract
      Recent research efforts on adversarial machine learning (ML) have investigated problem-space attacks, focusing on the generation of real evasive objects in domains where, unlike images, there is no clear inverse mapping to the feature space (e.g., software). However, the design, comparison, and real-world implications of problem-space attacks remain underexplored. This article makes three major contributions. Firstly, we propose a general formalization for adversarial ML evasion attacks in the problem-space, which includes the definition of a comprehensive set of constraints on available transformations, preserved semantics, absent artifacts, and plausibility. We shed light on the relationship between feature space and problem space, and we introduce the concept of side-effect features as the by-product of the inverse feature-mapping problem. This enables us to define and prove necessary and sufficient conditions for the existence of problem-space attacks. Secondly, building on our general formalization, we propose a novel problem-space attack on Android malware that overcomes past limitations in terms of semantics and artifacts. We have tested our approach on a dataset with 150K Android apps from 2016 and 2018 which show the practical feasibility of evading a state-of-the-art malware classifier along with its hardened version. Thirdly, we explore the effectiveness of adversarial training as a possible approach to enforce robustness against adversarial samples, evaluating its effectiveness on the considered machine learning models under different scenarios. Our results demonstrate that “adversarial-malware as a service” is a realistic threat, as we automatically generate thousands of realistic and inconspicuous adversarial applications at scale, where on average it takes only a few minutes to generate an adversarial instance.
    2024
    • Pitfalls in Machine Learning for Computer Security
      Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L., & Rieck, K. (2024). Pitfalls in Machine Learning for Computer Security. Communications of the ACM, 67(11), 104–112.
      DOI: 10.1145/3643456 Metadata
      Abstract
      With the growing processing power of computing systems and the increasing availability of massive datasets, machine learning algorithms have led to major breakthroughs in many different areas. This development has influenced computer security, spawning a series of work on learning-based security systems, such as for malware detection, vulnerability discovery, and binary code analysis. Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance and render learning-based systems potentially unsuitable for security tasks and practical deployment. In this paper, we look at this problem with critical eyes. First, we identify common pitfalls in the design, implementation, and evaluation of learning-based security systems. We conduct a study of 30 papers from top-tier security conferences within the past 10 years, confirming that these pitfalls are widespread in the current security literature. In an empirical analysis, we further demonstrate how individual pitfalls can lead to unrealistic performance and interpretations, obstructing the understanding of the security problem at hand. As a remedy, we propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible. Furthermore, we identify open problems when applying machine learning in security and provide directions for further research.